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Nonlinear oscillations and chaos from
digital filter overflow

By ANTHONY C. DAVIES

Department of Electronic and FElectrical Engineering, King’s College,
University of London, Strand, London WC2R 2LS, UK

Nonlinear digital-filter overflow-oscillations arising from two’s complement arithmetic

2 are described with the emphasis on explaining the reasons for the behaviour and
> s providing illustrations of typical oscillations. The complex properties of some of
o : these oscillations have led to extensive investigations of the nonlinear dynamics and
=7 — to proposals for applications. The paper provides an introduction to the published
E O literature on this subject.

£

1. Introduction

Digital filters are increasingly used for processing discrete-time (sampled-data) sig-
nals, and integrated-circuit technology has made available low-cost implementations
for many applications in communications and control, using software, hardware or
programmable digital signal processors fabricated as a VLSI chip.

Mathematically, digital filters are difference equations, which, for most applica-
tions, are linear with constant coefficients. The input—output behaviour of a filter of
order n comprises an nth order difference equation from which structures made of
adders, delays and multipliers may be derived. A set of first order difference equa-
tions, involving n state variables, provides a basis for description and analysis of
most aspects of such structures.

The processing is commonly subdivided into a cascade of simpler structures, with
second-order ones preferred for many applications. Often, the structures involve re-
cursion (i.e. feedback) with the consequent risk of instability if coefficients are in-
correctly chosen. The analysis and design of such filters can mostly be carried out
within a framework of linear algebra. The theory, techniques, terminology and design
procedures are now well established (Roberts 1987), with the z-transform providing
a major tool.

However, for digital implementation, both signals and coefficients must in practice
be represented by a finite number of binary digits (commonly 16 or 32 in current
practice) and the mathematical operations (either floating or fixed point arithmetic)
involve nonlinearities (rounding or truncation errors and the possibility of overflow
and underflow).

These inevitable finite-wordlength effects cause deviations from ideal behaviour
and can result in oscillations from a filter structure which would otherwise be stable.

The usual fixed-point implementation uses two’s complement arithmetic. This
arithmetic has a highly nonlinear overflow characteristic which can give rise to large
amplitude oscillations in recursive structures. Such oscillations can easily be sup-
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86 A. C. Davies

pressed in second-order filters (and many higher-order ones) either by a simple mod-
ification to the overflow characteristic (Ebert et al. 1969) or by using only special
structures guaranteed to be free of such oscillations (Barnes & Fam 1977; Roberts
1987). The oscillations are therefore seldom a problem in real applications, but they
are of intrinsic interest because of their complex dynamics and because applications
for them have been proposed (Kutzer et al. 1994). Oscillations can also arise from
rounding or truncation nonlinearities (Butterweck et al. 1989; Laakso 1993) but are
outside the scope of this paper.

Since it was pointed out that they could form a complex, fractal, pattern in the
state space (Chua & Lin 1988), the oscillations have been studied in detail (Davies &
Sriranjan 1989; Chua & Lin 1990b; Ogorzalek et al. 1992; Galias & Ogorzatek 1992;
Wu & Chua 1993; Kocarev & Chua 1993; Davies 1994), but there remain many
unanswered questions, and most of the quoted studies have considered only one or
a few specific coefficient values.

Most investigations ignore other inevitable nonlinear effects arising from the finite
wordlength of the signal samples, so the analysis is strictly not a study of digital filters
but of analogue sampled-data filters with a sawtooth nonlinearity in a feedback path.
This makes mathematical analysis tractable, and enables many properties of these
oscillations to be determined, but leads to some conclusions which do not apply to
real digital filters, and not all properties of the actual overflow oscillations can be
accounted for by such an analysis.

2. Review of linear theory and notation

The zero-input state equations of a second-order direct-form digital filter are:

0 1
Tppr = | = = Ay, k=0,1,2,...
T2 | boajle:],

k denotes the discrete-time step. For stability, the eigenvalues of A must be within
the unit circle, which is the interior of a triangle PQR in the coefficient (a,b) plane
(figure 1). In the region below the parabola b = —a?/4 there are two complex-
conjugate eigenvalues. For eigenvalues at radius r and angles 40,6 = —r? and a =
2r cos 6. The state equations are then:

. 0 1
= Tp.
o —r2 9rcosf | "

Radius 7 is a measure of damping. If » = 1, the structure is a lossless resonator
(digital oscillator) and generates a sampled sinusoidal signal. Angle  determines the
samples per period. For » < 1, the sinusoid has an exponentially decaying envelope,
while for » > 1, the structure is unstable, with an exponentially increasing envelope.

Figure 2 illustrates typical trajectories. If r = 1, orbits on an ellipse are generated.
If g8 = hm for some integers, g, h, a finite number of points form the orbit, whereas
if 6/7 is irrational, the points are dense on the ellipse.

Analysis is simplified by a non-singular transformation, & = Tw, of the state
variables to a new plane, w. The ellipses become circles, and if r = 1, at each
transition the state moves through an angle of # at constant radius, as illustrated in

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 1. Stability triangle in the (a,b) coefficent plane.
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Figure 2. (a) Trajectory for r = 1 and irrational /7 (6 = 36.23°, zo = [0.29,—0.29]7). (b)
Trajectory for r = 1 and rational 8/7 (8 = 36°, 2o = [0.29, —0.29]T). (c) Trajectory with
r<1,60=236°

figure 3.
1 0
rcos@ rsiné

T =

71 1 sin @ 0
sinf | —cosf 1/r
and
Wiy = TP ATw,

3. The overflow nonlinearity

Signals are assumed normalized to [—1,+1), with overflow outside this range de-
fined by nonlinearity F,
Flu] = (u+1) mod 2 — 1,
less satisfactorily expressed as Flu] = u—2i for 2i —1 < u < 2i+1 where ¢ is an inte-
ger. This is an idealization of suitably scaled fixed-point binary arithmetic, in which

the largest positive and negative representable numbers using d bits are, respectively,
+(2471 —1)/24=! ( = binary 0-1111...) and —1 (= binary 1-0000...). Thus, —1 can

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 3. Trajectories in w-plane: (a) 7 =1, 6 = 36.23°%; (b) r =1, 6 = 36°.

be represented exactly but +1 cannot. The sloping parts of the nonlinearity are in
reality a linear ‘staircase’ with 2¢ steps, but this quantization is neglected and, in ef-
fect, d is assumed to be infinite. Some consequences of this idealization are discussed
in §8.

Because of the nonlinearity, the state space is restricted to a square:

I -1 < 2,20 < +1.

Any transition which results in overflow is associated with an upward or downward
‘ump’ of 2 in the x5 state variable to bring the state back into I2. In the direct-form
structure z; cannot overflow because 1 (x1) = Ta(k). For other structures, this would
not necessarily be the case. The system is thus a piecewise-linear map F : I? — I2.
Since F is onto and A is non-singular (except for r = 0), F~! exists. For r < 1, F
is one-to-one (see Appendix).

The nonlinear behaviour is equivalent to driving the linear system by a ternary
{42, —2,0} sequence and the state equations for the filter with overflow may therefore
be expressed as:

T = F[Axy] = Az + bsy,

(I,'l _ O 1 fI/']_
T2 ], —r2  2rcosf | |z,

and in reverse-time:

+
k

Sk,
2

T
Ty = F‘l[A:ck] =A'z, + [2 O] Sk—1-

An overflow oscillation is thus associated with s (= sg, k = 0,1,2...), a ternary
sequence of +1, —1,0 values representing the overflows.

If ¥ denotes the set of all infinite sequences over the alphabet {+,—,0}, then
admissible sequences (those which correspond to possible overflow oscillations) are a
subset ¥ of ¥. Denoting by S the map from states = in I? to sequences in ¥, the
inverse map is defined by

S Hs)={x e I*: S(x) = s}

Phil. Trans. R. Soc. Lond. A (1995)
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Chaos from digital filters 89

Identifying admissible and non-admissible ternary sequences and determining their
structure and periodic lengths are challenging theoretical problems, so far only par-
tially solved. The sequences provide the foundation for a description in terms of
symbolic dynamics using symbols {+, —, 0}.

In the w-plane, the state space, J?, is a thombus for r = 1, with sides 2/sin 6,
interior angle 6, and inscribed circle C of unit radius. Each state transition in J? is
a clockwise rotation through 6 followed in the case of overflow by a vertical jump of
+2/sin 6 to return to the interior of J2.

The positive and negative overflows partition I? into three regions Iy, Iy, I_; with
boundaries:

Bi: —r?z; 4+ 2rcosfzy =1,
B_i: —r%z, +2rcosfzr, = —1.

In the J? partition into Jy, Jo, J_1, for » = 1 the boundaries are tangents to C' and
their slope is —cot 26. Iy, Jy are the regions in which Az, does not overflow (e.g.
so = 0), while I, J; and I_;,J_; are triangular regions in which Axy overflows in
the positive and negative direction, respectively.

(In the non-typical case of a linearly unstable filter with (a, b) values large enough
overflow-jumps of multiples of 2 become possible and s must then be modified ac-
cordingly to a (2m + 1) level sequence (m > 1).)

4. Overflow oscillations

Figure 4 shows typical overflow oscillations from a lossless resonator (r = 1); s is of
period 3 (+—0) and period 17 (+—004+—00+—0+—04—0). Joining successive states
by a line shows how the trajectory is formed. Although s is periodic, the overflow
oscillation generally is not. However, in each case, a periodic oscillation does exist,
generated if the initial state is at the centre of one of the ellipses (or circles, in J2).
If r is infinitesimally less than one, the oscillation converges to a limit cycle with the
same period as s (figure 5). The oscillation which occurs depends critically upon the
initial state xg.

(a) The circle formation process

Consider an oscillation of period m, and initial state wg at the centre of one of the
m circles. Let v = 2/sin § (the magnitude of the vertical jump following an overflow).
By representing each state w as a complex number (e.g. J? as an argand diagram
with axis we as the imaginary axis):

w; = wye +jso v,
wy = wy e +js; v,

Wy, = Wy = W1 e I? + j8m—1 V.
If wy is perturbed slightly to w{ by a small distance and angle:

w(’) = ’w0+d€'j¢,

w = w,, +de T = g + de"ImItI®,

Thus, on return to the vicinity of wg the deviation is unchanged in magnitude,
and the angle has changed to ¢ — mf. Since 6/ is irrational, the oscillation is no

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 4. Overflow oscillations: (a) 7 = 1, 6 = 36.23°, zo = [0.7,-0.7]T; () r = 1, § = 36.23°,
zo = [0.93,-0.93]T; (c) as (a) but states joined by lines; (d) as (b) but states joined by lines
and zo = [0.946, —0.946]T.
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Figure 5. Period 3 limit cycle with s ={...0+ -0+ -0+ —...}.

longer periodic and forms a dense set of points on a circle of radius d around each
of the original states. The ternary sequence s is unchanged.

The deviation, d, may be increased until one or more circles touches the boundary
of J?. A new overflow then occurs, changing s. Thus, any state within the set of m
maximum-size circles is associated with the same s.

Phil. Trans. R. Soc. Lond. A (1995)
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Chaos from digital filters 91

(b)

Figure 6. Complex oscillation: (a) r = 1, § = 37.86°, xo = [0.39, —0.39]™; (b) r = 1, § = 88°,
zo = [0.84, —0.84]T.

(a)

(b)

Figure 7. (a) Discrete-time waveform corresponding to figure 6a. (b) Ternary overflow
sequence, s, corresponding to figure 6a.

(b) Complex and fractal overflow oscillations

Figure 6 shows typical complex oscillations. The orbit generated avoids all those
regions corresponding to the simpler oscillations and therefore simultaneously reveals
(by the white areas) those parts of the state space. Figure 7a shows a small part of
the figure 6a oscillation as a discrete-time waveform, and figure 7b shows a small
part of the ternary overflow sequence s. Such sequences appear to be non-periodic
with chaotic properties. However, the Jacobian of F' is the constant matrix A, so the
Lyapunov exponents are simply the log magnitude of the eigenvalues of A. For r = 1,
these exponents are therefore zero, and the trajectories are not strictly chaotic. They
are, however, on the boundary of a chaotic regime, since they become positive for
r > 1 (Kocarev & Chua 1993).

Figure 8 is an expanded plot of the lower part of figure 6a; a self-similarity prop-
erty is evident, but magnification reveals other intricate features. A small change
in § or wy can affect the fine detail. Care is needed to prevent numerical rounding
errors influencing the appearance at large magnification. With damping, (r < 1),

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 8. Expansion of part of figure 6a.

discussed further in §7, only periodic limit cycles are observed, although with very
small damping, some periods may be very long and their orbit may superficially
resemble figure 6a at low resolution.

5. Dynamic structure of the state space

Sufficient conditions for global stability are well known (Ebert et al. 1969). Pro-
vided that |a| 4+ |b] < 1, overflow cannot occur from any state, and so the linear
behaviour applies. This defines a square within the stability triangle (figure 1) within
which the stable fixed-point (0,0) attracts all trajectories in I? and no overflow os-
cillations can be sustained.

For complex eigenvalues, this is equivalent to the condition,

cos@ < (1—1r%)/2r,

which defines the shaded area in figure 9. For r = 1 and /r irrational, overflow
oscillations occur for all wy outside the inscribed circle C of the rhombus, while for
r < 1, they occur only for some wq outside C, if at all.

(a) Periodic sequences
Equations for existence of a period m oscillation are easily derived directly from

the state equations, but a solution is practicable only for very short periods (Bose &
Chen 1991).

Phil. Trans. R. Soc. Lond. A (1995)
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Chaos from digital filters 93

Figure 9. Globally stable region in eigenvalue-plane.

For a ternary sequence s = $¢$182...8n_1... of period m, a corresponding se-
quence of states xoxi®s...x,,_1 follows from the state equations by imposing the
condition x,, = xq:

xr; = [I — Am]_l[Am_lb S; + Am_2b Si+1 +...+ Ab Si—2 + b Si—l]

fori=0...m-—1

For r = 1, det|I — A™| = 2(1 — cosm#) = 4sin® (mf/2), which is non-zero for
irrational @/m, and the equations have a unique solution. A direct way of testing
for the admissibility of a given sequence, s, is to solve these linear equations and
check that all ; are in I2. If they are, this also proves the existence of the period m
oscillation Toxixs ... Tym_1.

Since there are 3™ sequences of period m (many not admissible) this involves
extensive computation even for small m. For r = 1, much simpler necessary and
sufficient conditions have been derived (Chua & Lin 1990q, b; Galias & Ogorzalek
1992) and if in addition, cosé is rational (so that A is a rational matrix), Wu &
Chua (1993) have shown how the testing may be done using integer arithmetic only,
so eliminating rounding errors. For this condition 2™ is an upper bound for the
number of period m sequences. Many properties of admissible sequences have been
found, though most are for specific values of € only. For § < w/2, Wu & Chua
(1993) have shown that only the period-2 sequence (+, —, +, —,...) is without zeros,
and that no sequence can have two adjacent overflows in the same direction (e.g.
subsequences containing +, + or —, — are inadmissible in this range of 8).

Although these approaches enable non-admissible and admissible sequences to be
catalogued for small m and specific  values, they do not offer a general solution or
means of investigating long period and complex oscillations.

(b) Consequences of the uniqueness of predecessors

For r < 1, no w within C can be on a trajectory leading out of C, and so cannot
be on an overflow oscillation. For » < 1, all w within C, and some outside, lead to
the stable fixed-point at the origin.

Since no state can be simultaneously on more than one oscillation, the state space
is partitioned into distinct regions, each one associated with a particular overflow
sequence.

Phil. Trans. R. Soc. Lond. A (1995)
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82 (b)

AU A4

Figure 10. Area occupied by simple oscillations for § = 37.86° in = and w-planes.

(a)

7
7
i%

Because of the uniqueness of state predecessors, for » = 1 no w outside C' can be
on a trajectory which leads into C because each w in C' has its immediate predecessor
within C. The interior of C' consists of just those w where the behaviour is linear
with no overflows. For r = 1 any w outside C' must therefore be on some overflow
oscillation which forms a closed loop of states (maybe infinite in number), remaining
permanently outside C'.

6. Analysis of the lossless case

In the lossless case with § < 7/2, Davies (1992) showed that a class of simple
oscillations with exactly one + and — element in adjacent positions in each period
of s exists if and only if the period, m, is in the range 2 < m < Int(7/0). These
oscillations form a simple pattern of m — 1 ellipses on one side of the origin and one
on the opposite side. In J? the ellipses become circles, and the centres and maximum
radii of the circles can be derived analytically. Figure 4a is such an oscillation.

For example, if 36° < 6 < 45° the overflow-sequences in this class are:

s2 4, -+, (period 2),
s3A:  +,—,0,+,—,0,4+,—,0,.... (period 3),
s3B: —,+,0.—,+,0,—,+,0,.... (period 3),
s4A:  +,-,0,0,4,—,0,0,+,—,0,0,.... (period 4),
s4B: —,4+,0,0,—,+,0,0,—,+,0,0,.... (period 4).

Figure 10 shows the maximum-size circles of all these oscillations and the overflow-
free area for = 36.87°. In J?, there is always one circle on the long diagonal of the
rhombus, with centre at the point (w;,ws) given by

oy — 1 — 1 1g. e — — ain L (m — dn O «in L
wy = 1 — cot 3mb tan 56; wy = — sin 5(m — 1)/ sin 50 sin 5m#.
The maximum radius, 7,,, of this circle is 1 — w;, and since there are m circles for

Phil. Trans. R. Soc. Lond. A (1995)
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linear range (no overtlow)

Ay

90

angle to eigenvalues

Figure 11. Variation in area occupied by each of the simple oscillations.

period m, they occupy a total area of mnr2,. The variation of area with 6 follows
a similar pattern in each case. As 6 is increased from 0, the area grows, reaches a
maximum, and then reduces to zero when m = Int(r/0). The I? coordinates (1, zy)
are (wy, —wn).

The area taken up by all oscillations is the rhombus area minus the area of C'. The
residue, R, left after removing all circles of this class of simple oscillations is given
by

4 Int(7/6)
st—i;l—e———ﬂ——27rr§—2 Z mmrZ,.
m=3

Figure 11 shows how the number of different periods changes with 6. As 6 is
reduced from /2, the two circles corresponding to s, increase in size to a maximum
then decrease. The six circles corresponding to s3A and s3B are created when 7/3
is reached then grow and shrink again. Similarly the eight circles of s;A and s,B
are created at 7/4, and so on. R is the area available for other oscillations, including
short-period ones such as a period-3 sequence . .. 00+. . . admissible for 7/3 < § < 7/2
and the period-17 sequence shown in figure 4b as well as all the complex ones with
fractal appearance.

These results reveal a part of the structure of the state space: by removing the
space occupied by simple oscillations (the black part of figure 10) the residue becomes
increasingly fragmented. Any oscillation with a long-period s which remains in this
residue must inevitably have a complex structure, in order to avoid parts already
accounted for. For # > 7/2, the character of the admissible sequences is generally
quite different, and has not been investigated so thoroughly.

An oscillation comprising a finite number of ellipses corresponds to a periodic
admissible sequence with period equal to the number of ellipses so I? may be par-
titioned according to the character of the oscillations in each region. Three sets of
ternary sequences X, g, X, may be defined as follows:

Yo : 8 has finite period,
Y3 : s has finite period following an initial transient,
¥, : s is not periodic.
Then I, = S7}(X,NXF) is the subset of I? which contains the states on oscillations

Phil. Trans. R. Soc. Lond. A (1995)
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comprising a finite number of ellipses. Chua & Lin (1988) show that Iz = S~}(X5N
Y r) corresponds to oscillations which must start on the boundary z; =1 or o =1
and continue on the boundaries of a set of ellipses whose interior is in I,,.

The topology of the remaining area I, = S™'(X, N Xf) = I? — (I, U I) has been
investigated by Wu & Chua (1993) with conclusions that points in I, comprise line
segments and that if there is a finite number of admissible sequences in ¥, U¥ 3 then
there is an uncountable number in Y.

Since a real digital filter cannot have states with ; = 1 or x5 = 1, it therefore
has no oscillations in Iz. In a simulation or practical realization of a digital filter,
those oscillations with states in I, and which consist of many small ellipses are
indistinguishable from oscillations in I,.

7. The behaviour with damping

At each transition, the distance of the state from the origin in J? shrinks by r,
unless accompanied by an overflow. Overflow oscillations which, for » = 1, would form
two or more circles in J?, converge towards limit cycles, which for small damping,
are a sequence of states close to the centres of the circles, with the same period as the
ternary overflow sequence s. Thus J? comprises these periodic attractors surrounded
by basins of attraction which, for very small damping, include regions similar to the
maximum-diameter circles of the lossless case. As r is reduced, the states of each limit
cycle move away from the centres of the r = 1 circles, and their basins of attraction
acquire a more irregular shape with other parts of J? added. Longer-period cycles
cease to be sustainable. Eventually, the whole of J? is the basins of attraction of the
fixed point at the origin and the period-2 limit cycle associated with s = {+, —}.
Finally, the filter becomes globally stable with a single attractor.

Thus as r is decreased from unity, there is a progressive disappearance of long-
period oscillations, the ones that remain being those associated with ternary overflow
sequences which can produce large circles in the lossless case. The larger the circles
associated with an 7 = 1 oscillation the more robust these oscillations are against
reduction in r or changes in #. This provides a qualitative outline of the behaviour.

For negative damping (e.g. > 1), the structure is linearly unstable, and all states
in C are on outward-moving trajectories, eventually leading to overflow.

Such oscillations show promise as pseudo-random signal sources, with scope for
controlling the statistical properties by changing the filter-coefficients (Kutzer &
Schwarz 1994; Kutzer et al. 1994). By contrast with r < 1, the behaviour for r >
1 is not critically dependent upon the initial state, which is advantageous for a
practically useful signal source. Particular cases of linearly unstable structures with
integer coefficients are equivalent to a sawtooth map, for which several kinds of
well-documented chaotic behaviour can occur (Kocarev et al. 1994b).

8. Finite wordlength of signals

Because signals in a real digital filter are quantised, there is a finite number of
states (e.g. for a second-order filter with 16-bit signal wordlength, there are 232
states). The zero-input response of any finite-state machine is periodic, so all over-
flow oscillations are periodic. The complex oscillations can thus never be more than
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Chaos from digital filters 97

pseudo-chaotic in practice although the period may be long enough for them to be
useful pseudo-random signals.

For r = 1, the complex sequences occur only in R (figure 10), which has to support
many different sequences. The maximum period is therefore much less than the total
number of states. Lin & Chua (1993) found that when b = —1 and a is a power of
two, no period exceeded 2,495 for 8-bit quantization, and none exceeded 815 747 for
15-bit quantization (compared with total states of 65536 and 23 respectively).

9. Higher order digital filters

Some investigations of third-order filters have been reported (Chua & Lin 1990a;
Kutzer 1994). The state space is the cube I3 : —1 < z;,z9,73 < +1 and the
behaviour correspondingly more complicated. Third-order digital filters provide more
choice of coefficient values and as a source of pseudo-random signals promise a greater
variety of statistical properties than is available from second-order filters (Kutzer &
Schwarz 1994). For example, coefficients can be chosen to provide a signal with a
uniform probability density function and a flat frequency spectrum. An eigenvalue
analysis of the nonlinear dynamics of the nth-order direct-form filter has been given
by Kocarev et al. (1994).

10. Other overflow nonlinearities

The two’s complement nonlinearity is in practice normally replaced by a saturation
nonlinearity (an overflowed state variable is set to the maximum value), for which
no oscillation can occur with a linearly stable second-order filter, or occasionally by
a zeroing nonlinearity (an overflowed state variable is set to zero). In the former case
complex and chaotic behaviour can occur for a linearly unstable filter (Kocarev et
al. 1994b). Rakhmanova et al. (1994) have investigated the latter case and derived
existence conditions for oscillations.

11. Conclusions

The mechanism which causes overflow oscillations in digital filters and approaches
to its mathematical analysis have been described. The variation in behaviour with
location r, 6 of the complex eigenvalues has been emphasized. The transformed
state space J? is convenient for investigating the behaviour, but unsolved problems
remain such as admissibility of overflow sequences, the detailed structure of the
complex fractal-like oscillations from lossless resonators, the shapes of the basins of
attraction with damping, and the periodic lengths achievable for finite-wordlength
signals. Possible applications have only recently begun to be investigated.

Georgi Petkov is thanked for assistance with the preparation of this paper and the UK Engi-
neering and Physical Sciences Research Council (Grant GR/J 16459) and the British—-German
ARC programme (Project 393) are thanked for financial support.
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98 A. C. Davies
Appendix A. The uniqueness of state predecessors for » < 1

Consider two states x), and x}, followed by overflow s}, s} respectively, and sup-
pose that they have the same successor xy, ;.

T1(k+1) = 37/2(&) = x’zl(k):
To(ky1) = —r2x’1( gy + 27 cos Oz ) + 2s),

= —r? gy + 21 cos O iy + 2s).
Therefore z} ;) — 27, = 2/[r?(s}, — s})], so
fL'll(k) - xll_/(k) € {O,iQ/TZ,:i:4/T2}.

Since —1 < @ < 1, [@) 3,y — @7y| < 1and so zy,y =2, if r < 1.

Consequently, no state can have more than one predecessor for r < 1. There are
pathological cases where a state has no predecessor: for example, 1f r=20 Ais
singular, and a state with non-zero z, cannot follow any other state. Otherwise each
state has one predecessor.
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